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The Biology of Manual Therapies 

Brian C. Clark, PhD; James S. Thomas, PT, PhD; Stevan A. Walkowski, DO; and John N. Howell, PhD

Each year, more than 18 million adults in the United
States receive manual therapies, at a total annual out-of-
pocket cost of $3.9 billion. Although there is growing
evidence supporting the efficacy of manual therapies,
little is known about the mechanisms underlying these
treatments. This lack of basic knowledge significantly
limits the development of rational strategies for the use
of these treatments and potentially hinders their accept-
ance by the wider scientific and health care communities.
Many authors have hypothesized that manual therapies
act by disrupting the pain-spasm-pain cycle, but relatively
little experimental evidence has supported this hypoth-
esis. The authors have tested this hypothesis and sum-
marize their work on the biology of manual therapies. 
J Am Osteopath Assoc. 2012;112(9):617-629

Many scientists and clinicians have postulated that
manual therapies exert biologic effects on the

nervous system.1-16 It has been hypothesized that manual
therapies act mechanistically to disrupt the pain-spasm-
pain cycle.9,17 In brief, the conceptual basis for this cycle is
that pain leads to muscular hyperactivity (spasm), which
in turn causes or exacerbates pain (see Pain-Spasm-Pain
Cycle).18 Although 2 distinct neural pathways have been
proposed to support this model,19 each pathway operates
on the basis of the same concept, namely, that increased
excitatory input to the α-motoneuron pool leads to more
sustained and intense muscle activity. More than 3 decades
ago, Korr7 hypothesized that manual therapies act to dis-
rupt the pain-spasm-pain cycle by reducing the excitability
of the monosynaptic stretch reflex (also known as myotatic
reflex, deep tendon reflex, or muscle spindle reflex). How-
ever, relatively few studies have quantified the effects of
manual therapies on muscle activity20-24 or stretch reflex
excitability in humans,4,25-28 and thus, there are still limited
empirical data describing the effects and consequences of
manual therapies. 
       Our work has focused on the mechanistic effects of
manual therapies. The studies profiled here tested the
hypothesis that manual therapies act to disrupt the pain-
spasm-pain cycle. In this article, we review our latest work
on the biology of manual therapies. We will briefly review
the anatomy and physiology of muscle spindles, then dis-
cuss the pain-spasm-pain cycle, and finally present the
findings from these studies, providing our perspectives
on key questions to be addressed in future research. 

Muscle Spindles 
The scientific knowledge and understanding of human
muscle and nerve physiology has grown exponentially
during the past several decades with the advent of non-
invasive methodologies to study in vivo characteristics.
For example, at the start of the 20th century, the classic
works by Hoffmann29 describing the Hoffmann reflex (H-
reflex) and by Liddell and Sherrington30 describing the
stretch reflex led to a plethora of studies that expanded
our understanding of spinal and muscle reflex properties.
Today, the term “sensorimotor control” highlights the
inseparable coupling that exists between proprioceptive
sensory feedback and motor command. Sensory input
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arises from a variety of sources, and one key input to spinal
and cortical processing of sensory information arises from
the muscle spindles, which is easily demonstrable by the
illusions of movement that are created when the activity
of these sensors are manipulated.31-33 Figure 1 illustrates
the key anatomic features and neuropathways of muscle
spindles. Additionally, we refer the reader to the Web site
maintained by Arthur Prochazka, PhD, of the University
of Alberta for an interactive model explaining muscle
spindle behavior: http://www.angeltear.com/spindle
/spindle.html. 
       Muscle spindles relay sensory information on the
length of and changes in the length of a muscle.34,35 Muscle
spindles are collections of specialized muscle fibers (ie,
intrafusal muscle fibers) that are not part of the high-force–
producing muscle mass itself (ie, extrafusal muscle fibers
that are innervated by α-motoneurons).35 Although intra-
fusal fibers do not contribute substantially to the force pro-
duced during muscle contraction, they do have contractile
elements at their ends that are innervated by γ-motoneu-
rons.35 Muscle spindles reside parallel to extrafusal muscle
fibers, stretching alongside these muscle fibers during both
active and passive movements. Muscle spindles contain
nuclear chain and dynamic and static nuclear bag fibers,
which have different shapes and convey different types
of information.35 Group Ia afferents (primary afferents)
have annulospiral endings that wrap around the central
portion of all 3 types of intrafusal fibers and transmit infor-
mation about both length and rate of length change.36

Group II afferents (secondary afferents) have flower spray
endings that innervate the ends of the nuclear chain fibers,

and the static nuclear bag fibers transmit only information
about muscle length.36 The excitability of the muscle spin-
dles is regulated by the activity of γ-motoneurons.36 When
γ-motoneurons fire, they cause the intrafusal muscle fibers
to contract, which makes the muscle spindle more taut
and in turn increases the overall excitability of the spindle
(ie, increases the afferent discharge rate). 

Pain-Spasm-Pain Cycle
The pain-spasm-pain cycle is the concept whereby pain
leads to muscular hyperactivity (spasm), which in turn
causes or exacerbates pain.18 The theoretical rationale for
the pain-spasm-pain cycle is illustrated in Figure 2. Two
potential neural pathways have been posited as the basis
of the pain-spasm-pain cycle.19 In one of the proposed
pathways, nociceptive afferents directly transmit to exci-
tatory interneurons and then to α-motoneurons, resulting
in increased muscle activation (spasm). In the other pro-
posed pathway, the muscle spindles serve as a key
anatomic structure involved in a feed-forward loop. The
loop begins when nociceptive fibers provide excitatory
input to the γ-motoneurons that increase the sensitivity
of muscle spindles. This increased spindle sensitivity
heightens spindle afferent activity and thus increases exci-
tatory input to the α-motoneurons, further increasing
muscle activation and pain. 
       Numerous neurophysiologic studies have been con-
ducted to verify the existence of the pain-spasm-pain cycle
and the underlying neural pathways involved. A complete
discussion of this evidence can be found in articles by van
Dieën et al19 and Knutson.6 The majority of these studies

examined whether nociceptive sub-
stances that increase the discharge
rate of the chemosensitive group III
and IV muscle afferents (eg, arachi-
donic acid, bradykinin, lactate) also
increased the discharge rate of
muscle spindle afferents. A series of
elegant studies37-43 conducted by sci-
entists at the Centre for Muscu-
loskeletal Research at Sweden’s
National Institute for Working Life
provided strong evidence that a wide
variety of nociceptive stimuli excite
muscle spindle afferents in animals.
For example, a series of articles from
Djupsjöbacka et al37-39 from the mid-
1990s reported that injections of
arachidonic acid, lactic acid, potas-
sium chloride, and bradykinin
increased the firing rate of primary
and secondary muscle spindle affer-
ents in cats.37-39 A follow-up study41
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Figure 1. Anatomic and neural pathways of the muscle spindle. 
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from this group found that an injection of bradykinin in
combination with muscle stretch induces potent and long-
lasting excitatory effects on muscle spindle afferents, indi-
cating that stretch-sensitive nerve endings are sensitized
by nociceptive stimuli. Interestingly, these data suggest
that the nociceptive inputs are acting on the γ-efferent neu-
rons rather than acting directly on the muscle spindles, as
the effects were observed in homo- and heteronymous
muscles, including contralateral muscles.38,41 Conversely,
other studies of animals report no change in muscle spindle
afferent activity in response to nociceptive stimuli.44-46

       Data on the existence of the pain-spasm-pain cycle in
humans are also conflicting. For instance, Matre et al8

reported that a 5% hypertonic saline infusion to the soleus
and tibialis anterior muscles (experimentally inducing
muscle pain) increased stretch reflex in the painful muscles.
Similar observations, at least in resting muscles, have also
been reported by others.47,48 However, Zedka et al49 observed
that a hypertonic saline infusion into the human lumbar
erector spinae muscles did not modulate the stretch reflex
in the back muscles, and Birznieks et al50 observed that
experimental muscle pain did not influence muscle spindle
afferent activity recorded by means of microneurography.
Thus, although there is clear evidence supporting existence

of the pain-spasm-pain cycle in certain
models and muscle groups, that evi-
dence is sometimes disputed. 

The Biology of Manual Therapies
The series of studies summarized in the
following subsections tested whether
manual therapies acted to disrupt the
pain-spasm-pain cycle. The first of these
studies examined the acute effects of
strain-counterstrain treatment to mod-
ulate changes in the H- and stretch-
reflexes of the plantar flexor muscles in
patients with Achilles tendinitis.4 The
second study examined the effects of
osteopathic manipulative treatment
(OMT) to reduce resting muscle activity,
as assessed by means of muscle func-

tional magnetic resonance imaging (mfMRI) in patients
with acute low back pain (LBP).21 For this study, the authors
hypothesized that if manual therapies truly acted to disrupt
the pain-spasm-pain cycle, then one should observe a
reduction in resting muscle activity (ie, decreased resting
muscle hyperactivity/spasm). The third study examined
the effects of high-velocity, low-amplitude (HVLA) spinal
manipulation on the amplitude of stretch reflexes and
motor evoked potentials (assessed by means of transcranial
magnetic stimulation) of the erector spinae muscles in
patients with chronic LBP.25 The most recent study,51 in
2012, focused on the effects of nonthrust manual therapies
(ie, treatment techniques that use a low-velocity, low-force
approach) on the erector spinae short-latency stretch reflex. 

Study 1. Stretch reflex and Hoffman reflex
responses to OMT in patients with Achilles
tendinitis4

The purpose of this study was to determine if strain-coun-
terstain manual therapy reduced the sensitivity of the
short-latency (ie, monosynaptic) stretch reflex or the H-
reflex. The stretch reflex, a rapid excitatory response of a
muscle following stretch, is a complex muscle reaction
consisting of multiple excitatory responses occurring at
different latencies following muscle stretch, with the “short-
latency” response being an involuntary (re)action that
occurs in a matter of milliseconds following muscle stretch
(eg, the latency time for a biceps brachii reflex is approxi-
mately 20 milliseconds following the onset of stretch).52,53

The neural pathway mediating the short-latency stretch
reflex consists primarily of a pathway with a single synapse
in the spinal cord separating the Ia-afferent fiber from the
homonymous α-motoneuron.30,54,55 The H-reflex, which is
elicited by electrical stimulation of a peripheral nerve, acti-
vates the Ia-afferent nerve fibers from the muscle spindles

Figure 2. Two theoretical neural pathways suggested as the basis
of the pain-spasm-pain cycle. In panel A, nociceptive afferents (N)
transmit feedback via excitatory interneurons (E) to the α-motoneu-
rons (α) that cause increased muscle activation (spasm). In panel B,
nociceptive afferents (N) provide excitatory input on the γ-motoneu-
rons (γ) that increase the sensitivity of the muscle spindles (s), which
activate α-motoneurons via excitatory interneurons (E) further
increasing muscle activation and pain. Reprinted from van Dieën et
al19 with permission from Elsevier.

A B
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Table, revealed that the strain-counterstrain treatment pro-
duced a 23.1% decrease in the amplitude of the stretch
reflex of the soleus (P<.05) in patients with Achilles ten-
dinitis. Similarly significant responses were observed in
the stretch reflexes of the lateral and medial heads of the
gastrocnemius muscles. The treatment did not alter the
H-reflex. Additionally, subjective ratings of symptom
severity (ie, soreness, stiffness, and swelling) were lower
following treatment. In control participants, neither reflex
was significantly affected by sham manipulative treatment. 
       In summary, the results of this study4 indicated that
the amplitude of the stretch reflex in patients with Achilles
tendinitis decreased after strain-counterstrain manual
therapy. This finding suggests that a single strain-coun-
terstain treatment reduces the excitability of the stretch
reflex, which the authors postulated was because of the
treatment decreasing nociceptor activity and subsequently
decreasing the excitability of γ-motoneurons. Theoretically,
a reduction in the overall excitability of the stretch reflex
could lead to a reduced level of involuntary muscle activity.
Indeed, the basic tenet of the pain-spasm-pain model is
that pain will result in more sustained and increased
muscle activation.19 Here, the pain-spasm-pain model pre-
dicts that muscle activity levels will be high during sub-
maximal tasks and under resting conditions. As such, the

authors of a follow-up study21 (see study
2) sought to address this issue. Studies
14 and 4,51 however, focused on identi-
fying the mechanisms of manual ther-
apies in the context of LBP. The key
rationale for shifting focus to the mech-
anisms of manual therapies in LBP were
as follows: 

1. Low back pain is clinically signifi-
cant. One of the most com mon rea-
sons for seeking medical care, LBP
accounts for more than 3.7 million
physician visits each year in the
United States. Ninety percent of
adults will experience LBP in their
lifetime, 50% will experience recurrent
LBP, and 10% will develop chronic
pain and related disability.60-63

2. Low back pain is the most com mon
reson for seeking manual therapies.
According to a 2007 national survey,
more than 18 million US adults aged
18 years or older received manual
therapies in 2007, at a total annual
out-of-pocket cost of $3.9 billion.64

The most common reason for seeking
these treatments was LBP.64
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Figure 3. Schematic illustration of the Hoffmann-reflex (H-reflex) neural pathway. When
the peripheral nerve is electrically stimulated (1), action potentials are elicited selectively
in the axones of the sensory Ia afferents because of their large axone diameter (2). The
evoked action potentials propagate to the spinal cord, where they give rise to excitatory
postsynaptic potentials, in turn eliciting action potentials that travel in the α-motoneuron
axones toward the muscle (3). Subsequently, following a brief latency, the volley of afferent
action potentials is recorded in the muscle as an H-reflex. Abbreviation: EMG, electromyo-
gram. Reprinted from Aagaard et al57 with permission from The American Physiological
Society.

to produce a reflex contraction (Figure 3).56,57 Howell et al4

state the following: 

The H-reflex is similar to the stretch reflex except for the fact
that the H-reflex bypasses these muscle spindles, which serve
to initiate the stretch reflex.58 Because the H-reflex bypasses
the spindles, it cannot be modulated by the gamma efferent
system, which modulates the stretch reflex.59 If an experi-
mental or clinical intervention alters the stretch reflex, but
not the H-reflex, alteration of spindle sensitivity is generally
suggested, whereas if an intervention alters both reflexes,
the mechanism is more likely to relate either to altered [α-
motoneuron] excitability or to altered presynaptic inhibition
at Ia afferent fiber endings on the [α-motorneurons]. With
this stated the idea that the stretch reflex and H-reflex are
identical, except for the participation of the spindles, has
been in retreat in recent years. 

In this study,4 the authors quantified the amplitude of the
short-latency stretch reflex and H-reflex in the triceps surae
muscles (ie, the soleus together with the lateral and medial
heads of the gastrocnemius) in 16 patients with Achilles
tendinitis both before and after a single strain-counterstrain
session. Additionally, these measurements were also made
in 15 asymptomatic control participants before and after
sham manipulative treatment. The results, detailed in the



JAOA • Vol 112 • No 9 • September 2012 • 621Clark et al • Brief Report

BRIEF REPORT

3. Manual therapies are effective in
reducing LBP and disability. During
the past decade, there has been
growing scientific evidence supporting
the clinical effectiveness of manual
therapies for LBP.65-72

Moreover, the pain-spasm-pain cycle has
been postulated in the etiologic process
of LBP,19 and as such, we believe that LBP
not only serves as a great model to study
the mechanistic effects of manual thera-
pies, but also that understanding the
mechanisms in the context of LBP will
inform and impact the way practitioners
use manual therapies in clinical practice. 

Study 2. Muscle functional magnetic
resonance imaging and acute LBP21

In this study, Clark et al21 sought to determine whether
patients with acute LBP exhibited differences in their levels
of resting trunk muscle activity compared with healthy,
asymptomatic controls. The authors also sought to deter-
mine if a single treatment session of OMT alters the level
of resting muscle activity. They wrote the following21:

Numerous studies have utilized electromyography (EMG),
mainly surface EMG, to examine whether patients with LBP
exhibit differences in their muscle activation patterns under
resting conditions, with the majority not observing differences
between patients with LBP and controls,73-77 although some
have observed differences.78 Unfortunately, technical limita-
tions of surface EMG, such as the attenuation in the myo-
electric signal attributed to subcutaneous tissue and …
crosstalk among muscles—have limited the ability to precisely
quantify and localize the muscle activity of specific lumbar
muscles.79,80 [MRI], on the other hand, possesses outstanding
spatial resolution that allows for the investigation of individual
muscles. Muscle functional MRI allows noninvasive meas-
urement of the metabolic and hemodynamic responses of
skeletal muscle by observing changes in the contrast prop-
erties of certain MR images that occur in skeletal muscle
with activity.81-83 Specifically, mfMRI measures the transverse
relaxation time (T2) of skeletal muscle protons and allows
for determination of the spatial pattern of muscle activa-
tion.81-83 Muscle activity has been shown to increase T2, with
T2 changes within a muscle being sensitive to as few as 2
repetitions of resistance exercise84 and strongly related to the
magnitude of isometric torque produced by skeletal muscle.85

Accordingly, the authors used mfMRI to gain insight into
whether manual therapies affect resting activation patterns
of the trunk muscles. 
       Nine patients with nonspecific acute LBP (mean [stan-
dard deviation (SD)] score on a 0 to 10–point visual analog

scale, 3.02 [2.81]) and 9 age- and sex-matched asymptomatic
controls participated in this study. All participants under-
went MRI, and subsequently the patients with LBP received
a single session of OMT and then underwent another MRI.
The LBP participants reported back for an additional MRI
48 hours following their initial visit. The MRI data were
used to calculate T2 and T2 asymmetry (ie, side-to-side
differences) as an index of muscle activity from regions of
interest in the psoas, quadratus lumborum, multifidus,
and iliocostalis lumborum/longissimus thoracis muscles.
Results indicated that there were no differences between
the LBP patients and healthy controls when T2 was aver-
aged for the left- and right-sided muscles. However, the
quadratus lumborum muscle showed a significantly greater
mean (SD) T2 asymmetry in patients with acute LBP com-
pared with controls (29.1% [4.3%] vs 15.9% [4.1%]; P=.05)
(Figure 4). The psoas muscle also displayed a relatively
large, albeit nonsignificant, mean difference (22.7% [6.9%]
vs 9.5% [2.8%]; P=.11). In the patients with LBP, psoas T2
asymmetry was significantly reduced immediately after
the OMT (25.3% [6.9%] to 6.1% [1.8%], P=.05) (Figure 4),
and the change in pain immediately following treatment
was correlated with the change in psoas T2 asymmetry
(r=0.75, P=.02). The side exhibiting the greater baseline T2
value exhibited the greatest reduction in T2 activity, whereas
the side with the lower baseline T2 value seemed to increase
slightly. In Figure 5, 3 MRI images illustrate the differences
in T2 asymmetry patterns between a healthy control patient
and a patient with LBP, including the changes following
OMT. 
       In summary, the authors observed that OMT decreased
T2 asymmetry with the most notable reduction occurring
in the psoas muscle. Additionally, the side with the higher
T2 at baseline was reduced following treatment, and the
normalization of the T2 asymmetry was associated with

Table. 
Normalized Stretch Reflex and H-Reflex Amplitudes 

for Triceps Surae Muscles in Patients With Achilles Tendinitis Before and After 
a Single Strain-Counterstrain Manual Therapy Treatment (n=16)

                                                      Stretch Reflexa                                  H-Reflexa

Muscle                          Before     After     Change, %b       Before      After     Change, %

Soleus                              0.078       0.062         -23.08              0.500        0.485        -3.17

M. gastrocnemius            0.043       0.036         -18.30              0.278        0.261         6.43

L. gastrocnemius              0.025       0.019         -25.73              0.185        0.168        -9.31

a    The respective reflex values were expressed as the ratio of measured reflex amplitude relative to
the maximum M-wave amplitude evoked by means of supramaximal electrical stimulation in the
same subject. 

b   Significant differences between pre-treatment and post-treatment stretch reflexes were noted for 
all 3 muscles (P�.05). No significant differences were noted between pretreatment and post -
treatment H-reflexes.

Abbreviations: H-reflex, Hoffmann-reflex; M. gastrocnemius, medial gastrocnemius; L. gastrocnemius,
lateral gastrocnemius.



622 • JAOA • Vol 112 • No 9 • September 2012 Clark et al • Brief Report

BRIEF REPORT

reduced pain. It has long been postulated that the mech-
anism(s) of manual therapies are related to an attenuation
of the excitability of the muscle spindle afferents that
reduces reflexive contractile activity.4,7 Thus, while these
data alone do not provide insight into specific neurologic
mechanisms of manual therapies, they do suggest that in
patients with acute LBP, manual therapies may function
to normalize psoas muscle activity by reducing the activity
in the hyperactive side and presumably disrupt the pain-
spasm-pain cycle. The 2 most recent studies25,51 in this
series (see studies 3 and 4) expanded on these findings by
trying to identify the neurophysiologic effects of 2 different
types of manual therapies (ie, thrust-based and non–thrust-
based manual therapies) on the erector spinae muscles. 

Study 3. Neurophysiologic effects of spinal
manipulation in patients with chronic LBP25

In this study,25 the authors examined the neurophysiologic
effects of a single HVLA spinal manipulation thrust to
determine whether these physiologic responses were
dependent on HVLA spinal manipulation causing an
audible joint sound. They wrote as follows25: 

The scientific understanding of the neurophysiologic char-
acteristics of the human low back muscles has historically
been hindered by the lack of experimental techniques to
examine these muscles’ function in vivo. However, in recent
years innovative advancements in neurophysiologic assess-

ment techniques—such as transcranial magnetic stimulation
(TMS) to elicit motor evoked potentials (MEP)3,86-88 and
mechanically elicited stretch reflexes50,86,87—have begun to
be applied to the study of the human lumbar musculature. 

We previously demonstrated the reliability and stability
of these measures serially.86 The authors used these neu-
rophysiologic techniques to determine the effects of a single
HVLA spinal manipulation thrust on corticospinal and
stretch reflex excitability in patients with chronic LBP and
healthy participants. Further, the authors stated the fol-
lowing25:

In addition to determining whether the MEP and stretch
reflex amplitude were different in individuals with and
without LBP, we also examined whether these physiologic
responses depended on whether the HVLA spinal manipu-
lation caused an audible sound from the joint (ie, the pop or
cracking sound that one often associates with joint manipu-
lations). The role of the audible response in determining
treatment effects has long been a matter of intense debate.
Some studies have previously reported that an audible
response is not necessary to improve clinical outcomes.89,90

Some have reported that biomechanical effects (eg,
increased joint laxity, motion, and gapping) are contingent
on manipulation resulting in an audible sound.91,92 To date,
however, few studies have investigated whether the phys-
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Figure 4. Changes in transverse relaxation time
(T2) asymmetry in patients with acute low back
pain after a single osteopathic manipulative
treatment (OMT) session. Data were obtained
before treatment (baseline), immediately after
OMT, and 48 hours after OMT. Value of T2
asymmetry was calculated as the absolute value
of the percent difference in magnetic reso-
nance imaging–derived T2 between the left-
and right-sided muscles. Immediately after
OMT, the T2 asymmetry in the psoas muscle
was reduced, but it returned to baseline levels
after 48 hours, although a modest effect size
was still observed. Conversely, 48 hours after
OMT, a small but significant increase in multi-
fidus T2 asymmetry was observed. The quad-
ratus lumborum and iliocostalis/longissimus
muscles exhibited modest effect sizes for
reduced T2 asymmetry associated with OMT,
although these differences failed to reach sta-
tistical significance. aP=.05, η2=0.42. bP=.06,
η2=0.41. cP=.23, η2=0.19. dP=.27, η2=0.17. eP=.15,
η2=0.19. fP=.01, η2=0.67. Reprinted from Clark
et al.21
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iologic response is dependent on the manipulation causing
an audible joint sound.
       Ten patients with chronic LBP—defined by usual
rating of mean (SD) 4.0 (1.2) on a 0 to 10 visual analog
scale—and 10 age-, sex-, and body mass index–matched
asymptomatic control participants were enrolled in this
study. The effects of a single HVLA spinal manipulation
thrust on MEP and short-latency stretch reflex amplitude
of the erector spinae muscles were assessed before and
approximately 10 minutes after treatment (Figure 6 and
Figure 7). The results, expressed as mean (SD), indicated
that HVLA spinal manipulation did not alter the erector
spinae MEP amplitude in patients with chronic LBP (0.80
[0.33] to 0.80 [0.30] μV) or in asymptomatic controls (0.56
[0.09] to 0.57 [0.06] μV). Similarly, HVLA spinal manipu-
lation did not alter the erector spinae stretch reflex ampli-
tude in patients with chronic LBP (0.66 [0.12] to 0.66 [0.15]
μV) or in asymptomatic controls (0.60 [0.09] to 0.55 [0.08]
μV). Interestingly, study participants whose treatment pro-

duced an audible response (regardless of whether they
had LBP) exhibited a 20% decrease in the stretch reflex
but no change in the MEP amplitude (Figure 8). 
       In summary, the authors observed that a single HVLA
spinal manipulation treatment did not systematically alter
MEP or short-latency stretch reflex amplitude of the erector
spinae muscles in patients with chronic LBP or asympto-
matic controls, at least when assessed approximately 10
minutes after treatment. However, when the authors looked
at the data regarding whether HVLA spinal manipulation
caused an audible joint sound, they observed that study
participants exhibiting an audible response exhibited a
substantial reduction in the short-latency stretch reflex
regardless of patient group. This finding provides further
insight into the mechanisms of action of manual therapies
and suggests that in certain cases they act by down-regu-
lating the excitability of the muscle spindles or the various
segmental sites of the Ia-reflex pathway. The follow-up
investigation51 (study 4) focused on examining the effects
of nonthrust manual therapy on changes in the short-
latency stretch reflex. 

Study 4. Nonthrust manual therapy reduces erector
spinae short-latency stretch reflex asymmetries in
patients with chronic LBP51

The purpose of this study51 was to determine if nonthrust
manual therapy attenuates the short-latency stretch reflex
of the erector spinae muscles in patients with chronic
LBP. Nine subjects with chronic LBP—defined by usual
LBP rating of mean (SD) 3.7 (0.5) on a 0 to 10–point visual
analog scale—participated in this study. The effects of a
single session of nonthrust manual therapy on the short-
latency stretch reflex amplitude were assessed before
and approximately 10 minutes after treatment. The non-
thrust manual therapy procedures consisted of a com-
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Figure 5. Transaxial magnetic resonance images of a 69-year-old
woman without back pain (A) and a 69-year-old woman with acute
low back pain before (B) and immediately after (C) osteopathic
manipulative treatment. These images of the L3-L4 region illustrate
the spatial orientation of the psoas, quadratus lumborum, iliocostalis
lumborum/longissimus thoracis, and multifidus muscles. Ten-mil-
limeter thick transaxial images were obtained from the lumbar
region with a 2000-millisecond repetition time, 30-millisecond and
65-millisecond echo times, and a 10-mm slice-to-slice interval. These
derived images were used to calculate the transverse relaxation
time (T2) and allow for a noninvasive measurement of the metabolic
and hemodynamic responses of skeletal muscle in association with
muscle activity. Note the similar signal intensity in the left and right
lumbar muscles of the control subject (A), the asymmetry in the
psoas and quadratus lumborum muscles before treatment (B), and
the attenuation of this asymmetry immediately after treatment (C).
Reprinted from Clark et al.21
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bination of 3 common non–thrust-based techniques com-
monly used to treat LBP: muscle energy, myofascial
release, and strain-counterstrain. The results indicated
that the patients with LBP exhibited a large asymmetry
in the short-latency stretch reflex at baseline (prior to

treatment), with the higher of the paraspinal sides
exhibiting a mean (SD) 100.2% (28.2%) greater value
than the lower side. After the nonthrust manual therapy,
stretch reflex asymmetry was reduced (100.2 [28.2%] to
36.6% [23.1%]; P=.03) (Figure 9). This change was largely
due to a reduced stretch reflex amplitude on the side
that was higher at baseline (35% reduction following
treatment; P=.05), whereas no change over time was
observed in the low side (P=.23) (Figure 10). Additionally,
there was no difference between the respective sides fol-
lowing the intervention (P=.38), indicating that the asym-
metry was normalized after treatment. 
       These findings provide insight into the mechanisms
of action of nonthrust manual therapy and—as with the
aforementioned work on HVLA manual therapy—suggest
that manual therapies in certain instances act by down-
regulating the excitability of the muscle spindles or the
various segmental sites of the Ia-reflex pathway. One lim-
itation of studies 3 and 4, which observed changes in
excitability for erector spinae stretch reflex was the inability
of the authors to distinguish changes in spindle sensitivity
from the Ia-reflex pathway (as we described previously
in the discussion relating to study 1).4 Unfortunately, the
anatomy of the erector spinae muscles made it technically
difficult (if not impossible) to elicit readings of H-reflexes
from this muscle group. Unlike the case with the triceps
surae in study 1, the authors could not definitively identify
which anatomic substrate or segmental site was the source
of observed changes. In the next section, we collectively
interpret the findings from the recent studies and provide
our perspectives on key questions and issues that need to
be addressed in the future to vertically advance our under-
standing and clinical use of manual therapies.
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Figure 6. The experimental setup for performing transcranial mag-
netic stimulation to evoke motor-evoked potentials from the erector
spinae muscles. A representative motor potential recorded from the
erector spinae muscles is illustrated on the right. Abbreviation: SA,
stimulus artifact. Reprinted from Goss et al86 with permission from
Elsevier. 

Figure 7. Depiction of the experimental
setup for evoking short-latency stretch
reflexes from the lumbar paraspinal mus-
cles. The tip of an electro mechanical tap-
ping apparatus is gradually pressed into
the erector spinae tissue (A) until a pre-
loaded force of 30 N is reached, after
which a rapid mechanical tap to the
muscle with a net force of 90 N is delivered
(B). A representative example of a short-
latency stretch reflex is then recorded from
the erector spinae muscles in response to
the mechanical tap (C). Abbreviations:
EMG, electromyogram; SA, stimulus arti-
fact. Reprinted from Goss et al86 with per-
mission from Elsevier.
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Conceptual Model on the Mechanisms of Manual
Therapies and Perspectives
The series of studies summarized in this article provide
consistent evidence suggesting that a single manual therapy
reduces the sensitivity of the muscle spindles to stretch.
In Figure 11, we present our working conceptual model
on the pain-spasm-pain cycle (Figure 11A), as well as an
integrated model where we postulate on how manual
therapies act to disrupt the pain-spasm-pain cycle (Figure
11B). Specifically, in Figure 11A, we postulate that muscu-
loskeletal pain conditions (eg, LBP) are associated with
heightened levels of nociceptive input arising from dam-
aged tissues, such as skeletal muscle (eg, class III and IV
afferents), tendons, ligaments, bone, and annulus fibrosus.
We postulate that this increased nociceptive input increases
excitatory input to the γ-motoneurons, which increases
the excitability of the muscle spindle and results in
increased muscle spindle–afferent activity, particularly in
response to stretch or changes in muscle length. This height-
ened level of muscle spindle–afferent activity, along with
heightened level of nociceptive input, would theoretically
result in the pool of α-motoneurons receiving greater exci-
tatory input. This increased level of excitatory input could
result in involuntary activation of α-motoneurons and
muscle fibers (ie, spasm), or a greater probability of α-
motoneurons discharging with lower levels of descending
supraspinal input (or excitatory input from any source).
Ultimately, the end-organ effect would increase muscle
activity, which could further exacerbate nociceptive input
and, in turn, the pain-spasm-pain cycle. 

       We postulate that manual therapies function, at least
in part, by attenuating nociceptive input, which in turn
reduces excitatory input to the γ-motoneurons, thereby
normalizing the excitability of the stretch reflex (Figure
11B). This decreased stretch reflex response, coupled with
the reduced nociceptive input, would lessen excitatory
input to the α-motoneuron pool, ultimately decreasing
muscle activity. Further, this series of events could also
help to restore motion to affected tissues because the atten-
uated stretch reflex response may lessen the likelihood or
severity of reflexive involuntary contractions that may
occur with functional movements. Figure 11 pools data
from studies 1, 3, and 4 to support the notion that manual
therapies act to reduce the excitability of the muscle spindles
(as we have observed by means of a consistent decrease
in the short-latency stretch reflex response). Data from
study 2 show that manual therapies also reduce the activity
of hyperactive skeletal muscles. 
       Our conceptual model on the mechanisms of manual
therapies is far from complete, and further work is needed
to address several key questions. From a basic science
mechanistic perspective, there are several key questions
that need to be addressed, for example: 

◾ Do manual therapies alter nociceptive processing and,
if so, in what way?

◾ Do manual therapies exert effects on higher brain centers
and, if so, in what way?

◾ Do different types of manual therapies (eg, thrust-based
vs non–thrust-based) have different mechanistic actions
(eg, exert effects directly on muscle spindle sensitivity
independent of nociceptive mediators)? 

Answers to these questions would provide critical insight
on the biological effects of manual therapies. From a trans-
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Figure 11. Conceptual model of the pain-spasm-
pain cycle (A) and conceptual model of manual
therapies disrupting the pain-spasm-pain cycle
(B). In panel A, musculoskeletal pain (eg, low back
pain) causes increased levels of nociceptive input
when tissues such as muscles, tendons, or bones
are damaged (1). The increased nociceptive input
transmits excitatory input to the γ-motoneurons
(2), which increases the excitability of muscle
spindle and muscle spindle afferents, particularly
in response to stretch or changes in muscle length.
Heightened levels of nociceptive input and
afferent activity would then transmit excitatory
input to α-motoneurons (3), resulting in involun-
tary activation (ie, spasm) or involuntary discharge
of α-motoneurons caused by lower levels of exci-
tatory input from other sources (eg, descending
input) (4). Ultimately, the end-organ effect would
be increased muscle activity, which could further
exacerbate nociceptive input and, in turn, the
pain-spasm-pain cycle. In panel B, we postulate
that manual therapies function by attenuating
nociceptive input (1), which in turn reduces exci-
tatory input to the γ-motoneurons, thereby nor-
malizing the excitability of the stretch reflex (2).
This decreased stretch reflex response, coupled
with the reduced nociceptive input, would result
in less excitatory input to α-motorneuron pools
(3), ultimately decreasing muscle activity (4). Data
from studies 1, 3, and 4 support the theory that
manual therapies act to reduce the excitability
of the muscle spindles, and data from study 2
support the theory that manual therapies reduce
the hyperactivity of skeletal muscles.
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lational science perspective, we still need to better define
and understand the timing of biological effects of manual
therapy, as well as investigate longer-term courses of treat-
ments (eg, Do multiple treatments result in additive
effects?). Subsequent studies will, in the long term, assist
in optimizing the frequency and duration of manual ther-
apies. Lastly, clinical prediction rules for the use of manual
therapies need to be developed and refined. Recent efforts
on this front have been productive,93-99 but more work is
certainly needed to better identify which individuals are
most likely to benefit from various types of manual therapy
interventions. 

Conclusion 
Our work over the past 5 years has focused on the mech-
anistic effects of manual therapies. Specifically, we have
tested hypotheses centered on whether manual therapies
play a role in disrupting the pain-spasm-pain cycle. Col-
lectively, the evidence from these studies suggests that
manual therapies act to disrupt the pain-spasm-pain cycle. 
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